Math, asked by saman9250, 1 year ago

Tan(45+A/2)=secA+TanA

Answers

Answered by ruhig
67
there are 2 photos
i hope this helps you
Attachments:

ruhig: do you understand the sum
ruhig: plzzz press thank you button
Answered by boffeemadrid
27

Answer:


Step-by-step explanation:

Taking the LHS of the given equation, we have

tan(45+\frac{A}{2})=\frac{tan45+tan\frac{A}{2}}{1-tan45tan\frac{A}{2}}

=\frac{1+tan\frac{A}{2}}{1-tan\frac{A}{2}}

=\frac{1+\frac{sin\frac{A}{2}}{cos\frac{A}{2}}}{1-\frac{sin\frac{A}{2}}{cos\frac{A}{2}}}}

=\frac{cos\frac{A}{2}+sin\frac{A}{2}}{cos\frac{A}{2}-sin\frac{A}{2}}

=\frac{(cos\frac{A}{2}+sin\frac{A}{2})^{2}}{cos^{2}\frac{A}{2}-sin^{2}\frac{A}{2}}

=\frac{cos^{2}\frac{A}{2}+sin^{2}\frac{A}{2}+2cos\frac{A}{2}sin\frac{A}{2}}{cosA}

=\frac{1+sinA}{cosA}

=\frac{1}{cosA}+\frac{sinA}{cosA}

=secA+tanA

=RHS

Hence proved


Similar questions