Math, asked by hiba7980, 1 year ago

Tan(45+A) + Tan(45-A) = 2Sec2A

Answers

Answered by mrunalsonawane1331
27

tan(45+A)+tan(45-A) =


= [tan(45)+tanA] / [1-tan45.tanA] + [tan(45)-tanA] / [1+tan45.tanA] =


= (1+tanA) / (1-tanA) + (1-tanA) / (1 + tanA) =


= (1+tanA)^2 / (1-tan^2A) + (1-tanA)^2 / (1 - tan^2A) =


= [(1+tanA)^2 + (1-tanA)^2] / (1-tan^2A) = 2(1+tan^2A) / (1-tan^2A) =


= 2sec2A

LHS=RHS

hope it helps.. regrads

Answered by SushmitaAhluwalia
28

To prove: Tan(45+A) + Tan(45-A) = 2sec2A

  • We know that,

               Tan(A+B) =\frac{TanA+TanB}{1-TanATanB}  \\Tan(A-B) =\frac{TanA-TanB}{1+TanATanB}

  • Consider,

        LHS = Tan(45+A) + Tan(45-A)

                = \frac{Tan45+TanA}{1-Tan45TanA} + \frac{Tan45-TanA}{1+Tan45TanA}

                = \frac{1+TanA}{1-TanA} + \frac{1-TanA}{1+TanA}                             [Tan45 = 1]

                = \frac{(1+TanA)^{2}+(1-TanA)^{2} } {(1-TanA)(1+TanA)}

                = \frac{1+Tan^{2}A+2TanA+1+Tan^{2}A-2TanA }{1-Tan^{2}A}

                =  \frac{2(1+Tan^{2}A) }{1-Tan^{2}A}

                = \frac{2(1+\frac{sin^{2}A }{cos^{2}A }) }{1-\frac{sin^{2}A }{cos^{2}A} }

                = \frac{2(cos^{2} A+sin^{2} A)}{(cos^{2} A-sin^{2} A)}

                = \frac{2(1)}{cos2A}                                                   [cos^{2}A-sin^{2}A = cos2A]

                = 2sec2A

                = RHS

Similar questions