Tan(45+A) + Tan(45-A) = 2Sec2A
Answers
Answered by
27
tan(45+A)+tan(45-A) =
= [tan(45)+tanA] / [1-tan45.tanA] + [tan(45)-tanA] / [1+tan45.tanA] =
= (1+tanA) / (1-tanA) + (1-tanA) / (1 + tanA) =
= (1+tanA)^2 / (1-tan^2A) + (1-tanA)^2 / (1 - tan^2A) =
= [(1+tanA)^2 + (1-tanA)^2] / (1-tan^2A) = 2(1+tan^2A) / (1-tan^2A) =
= 2sec2A
LHS=RHS
hope it helps.. regrads
Answered by
28
To prove: Tan(45+A) + Tan(45-A) = 2sec2A
- We know that,
- Consider,
LHS = Tan(45+A) + Tan(45-A)
=
= [Tan45 = 1]
=
=
=
=
=
= []
= 2sec2A
= RHS
Similar questions
Math,
7 months ago