Math, asked by mandesin7562, 9 months ago

Tan(45+theta)+tan(45-theta)/Tan(45+theta)-tan(45-theta)

Answers

Answered by Anonymous
10

\huge{\red{\fbox{\purple{\underline{\blue{Answer:}}}}}}

Given,

  • \dfrac{tan(45+\theta)+tan(45-\theta)}{tan(45+\theta)-tan(45-\theta)}

\large{\blue{\fbox{\orange{\underline{\red{\star\;Note}}}}}}

  • tan(a+b)=\dfrac{tan(a)+tan(b)}{1-tan(a)tan(b)}

  • tan(a-b)=\dfrac{tan(a)-tan(b)}{1+tan(a)tan(b)}

  • 1+tan^2(\theta)=sec^2(\theta)

Substituting in the formula , we get,

  • \dfrac{tan(45+\theta)+tan(45-\theta)}{tan(45+\theta)-tan(45-\theta)}

  • \dfrac{\frac{tan(45)+tan(\theta)}{1-tan(45)tan(\theta)} + \frac{tan(45)-tan(\theta)}{1+tan(45)tan(\theta)}}{\frac{tan(45)+tan(\theta)}{1-tan(45)tan(\theta)}-\frac{tan(45)-tan(\theta)}{1+tan(45)tan(\theta)}}

  • \dfrac{\frac{1+tan(\theta)}{1-tan(\theta)} + \frac{1-tan(\theta)}{1+tan(\theta)}}{\frac{1+tan(\theta)}{1-tan(\theta)}-\frac{1-tan(\theta)}{1+tan(\theta)}}

  • \dfrac{{(1+tan(\theta))}^2 + {(1-tan(\theta))}^2}{{(1+tan(\theta))}^2 - {(1-tan(\theta))}^2}

  • \dfrac{1+tan^2(\theta)+2tan(\theta)+1+tan^2(\theta)-2tan(\theta)}{1+tan^2(\theta)+2tan(\theta)-(1+tan^2(\theta)-2tan(\theta))}

  • \dfrac{2+2tan^2(\theta)}{4tan(\theta)}

  • \dfrac{2sec^2(\theta)}{4tan(\theta)}

  • \dfrac{sec^2(\theta)}{2tan(\theta)}
Similar questions