Tan(45+x)=sec2x+tan 2x
Answers
Answered by
32
LHS = Tan(45° + x )
=(Tan45° +Tan45°)/(1-Tanx.Tan45°)
=(Tanx + 1)/( 1- Tanx )
=( Sinx/cosx + 1)./( 1- sinx/cosx)
=(sinx + cosx )/(cosx - sinx)
=(sinx +cosx )(cosx - sinx)/(cosx -sinx)²
=(sin²x -cos²x)/(1-sin2x)
=cos2x/(sin2x -1)
=1/(sin2x - 1)/cos2x
=1/(tan2x - sec2x )
=(tan2x + sec2x )= RHS
=(Tan45° +Tan45°)/(1-Tanx.Tan45°)
=(Tanx + 1)/( 1- Tanx )
=( Sinx/cosx + 1)./( 1- sinx/cosx)
=(sinx + cosx )/(cosx - sinx)
=(sinx +cosx )(cosx - sinx)/(cosx -sinx)²
=(sin²x -cos²x)/(1-sin2x)
=cos2x/(sin2x -1)
=1/(sin2x - 1)/cos2x
=1/(tan2x - sec2x )
=(tan2x + sec2x )= RHS
Answered by
3
Answer:
tan2x + sec2x
Step-by-step explanation:
tan(45 + x) = tan(90 + 2x/2)
we know that:-
tan2x = 2tanx/1-tan^2(x)
tanx = -cot2x + cosec2x
so
tan(90 + 2x/2) = -cot(90 + 2x) + cosec(90 + 2x)
-------"-------"--- = tan2x + sec2x
tan(45 + x) = tan2x + sec2x
Similar questions