tan(45°-A/2)=1-sin A/cos A
Answers
Answered by
0
LHS
= cosA ÷ (1 - sinA)
= [cosA ÷ (1 - sinA)] * [ (1 + sinA)÷(1 + sinA) ]
= [cosA * (1 + sinA)] ÷ [(1 - sinA) * (1 + sinA) ]
= [cosA * (1 + sinA)] ÷ (1-sin²A)
= [cosA * (1 + sinA)] ÷ cos² A
= (1 + sinA)÷ cosA
= [ cos²(A/2) + sin²(A/2)+ 2sin(A/2)cos(A/2) ] ÷ [cos²(A/2) - sin²(A/2)]
= [ cos(A/2) + sin(A/2) ]² ÷ [ {cos(A/2) - sin(A/2)} * {cos(A/2) + sin(A/2)} ]
= [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)]
= { [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)] } * { [1÷ cos(A/2)] ÷[1÷ cos(A/2)] }
= [ 1+ tan(A/2) ] ÷ [ 1-tan(A/2) ]
= [ tan 45° + tan(A/2) ] ÷ [ 1 - tan 45° tan(A/2) ]
= tan (45° + A/2) = RHS (hence proved)
.
.
.
.
mark me as a brainisr
Similar questions