Math, asked by vidyarathi8982, 10 months ago

Tan 60°= 2 tan 30°/1- tan2 30°

Answers

Answered by Sharad001
107

Question :-

Prove that

 \tan 60 \degree =  \frac{2 \tan 30 \degree}{1 -  { \tan}^{2} 30 \degree}  \\

Proof :-

Taking left hand side

→ LHS = tan 60° = √3

now taking right hand side

 \implies \: \frac{2 \tan 30 \degree}{1 -  { \tan}^{2} 30 \degree}  \because \tan 30 =  \frac{1}{ \sqrt{3} }  \:  \\  \\  \implies \:  \frac{2 \frac{1}{ \sqrt{3} } }{1 -  { \big( \frac{1}{ \sqrt{3} } \big) }^{2} }  \\  \\  \implies \:  \frac{ \frac{2}{ \sqrt{3} } }{ 1 -  \frac{1}{3} }  \\  \\  \implies \:  \frac{ \frac{2}{ \sqrt{3} } }{ \frac{2}{3} }  \\  \\  \implies \:  \frac{3}{ \sqrt{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  \implies \:  \frac{3 \sqrt{3} }{3}  =  \sqrt{3}

LHS = RHS

hence proved .

Answered by Anonymous
7

\huge\tt{Solution:-}

tan60° = \frac{2\:tan30° }{1 - {tan}^{2}30°} \\ \\ LHS = \frac{2tan30° }{1 - {tan}^{2}30°} \\ \\ LHS. = \frac{2 × \frac{1}{\sqrt{3}}}{1 - {{\frac{1}{\sqrt{3}}}}^{2}} \\ \\ LHS = \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{3}}\\ \\LHS= \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} \\ \\LHS= \frac{3}{\sqrt{3}} \\ \\ LHS = \frac{3}{\sqrt{3}} × \frac{\sqrt{3}}{\sqrt{3}}\\ \\ LHS = \frac{3\sqrt{3}}{3} \\ \\ LHS = \sqrt{3} \\ \\ LHS =  tan60° \\ \\ HENCE \: PROVED

Similar questions