Math, asked by sasmitasatpathy128, 9 months ago

tan(60°-A) = √3cosA -sinA÷cosA +√3sinA​

Answers

Answered by Rohit18Bhadauria
7

Correct Question:

Prove that \bf{tan(60^{\circ}-A)=\dfrac{\sqrt{3}cosA-sinA}{cosA+\sqrt{3}sinA}}.

To Prove:

\longrightarrow\sf{tan(60^{\circ}-A)=\dfrac{\sqrt{3}cosA-sinA}{cosA+\sqrt{3}sinA}}

Solution:

We know that,

\longrightarrow\sf{tan(A-B)=\dfrac{tanA-tanB}{1+tanAtanB}}

\longrightarrow\sf{tan(A)=\dfrac{sinA}{cosA}}

\longrightarrow\sf{tan60^{\circ}=\sqrt{3}}

Now,

\sf{L.H.S.=tan(60^{\circ}-A)}

\sf{L.H.S.=\dfrac{tan60^{\circ}-tanA}{1+tan60^{\circ}tanA}}

\sf{L.H.S.=\dfrac{\sqrt{3}-\dfrac{sinA}{cosA}}{1+\dfrac{\sqrt{3}sinA}{cosA}}}

\sf{L.H.S.=\dfrac{\dfrac{\sqrt{3}cosA-sinA}{\cancel{cosA}}}{\dfrac{cosA+\sqrt{3}sinA}{\cancel{cosA}}}}

\sf{L.H.S.=\dfrac{\sqrt{3}cosA-sinA}{cosA+\sqrt{3}sinA}}

\sf{L.H.S.=R.H.S.}

Hence Proved

Few more Identities:

\rightarrow\bf{sin(A+B)=sinAcosB+cosAsinB}

\rightarrow\bf{sin(A-B)=sinAcosB-cosAsinB}

\rightarrow\bf{cos(A+B)=cosAcosB-sinAsinB}

\rightarrow\bf{cos(A-B)=cosAcosB+sinAsinB}

\rightarrow\bf{tan(A+B)=\dfrac{tanA+tanB}{1-tanAtanB}}

Similar questions