Math, asked by shailendrachauhan200, 1 year ago

tan 60° + sin 30° + cos 30°+
sin 60° + cos 45 + cot 30°​

Answers

Answered by Davidsouza
0

Answer:

 \frac{2 \sqrt{3} +  \sqrt{2}  + 1 }{2}

Step-by-step explanation:

tan 60°+ cot 30°+ sin 30°+ cos 30° + sin 60° + cos 45°----------------------------[1]

Now

tan 60°=cot 30°= √3

sin 30°= 1/2

cos 30°=sin 60°= √3/2

cos 45°= 1/√2

Substitute all these values in [1] and u get the answer

Answered by sushmaag2102
0

\frac{6\sqrt{3} + 1 + \sqrt{2}}{2}

Step-by-step explanation:

We have to evaluate the following expression:

tan 60° + sin 30° + cos 30° + sin 60° + cos 45° + cot 30°

Now, tan 60° = √3, sin 30° = 1/2, cos 30° = (√3)/2, sin 60° = (√3)/2, cos 45° = 1/√2 and cot 30° = √3.

Therefore, tan 60° + sin 30° + cos 30° + sin 60° + cos 45° + cot 30°

= \sqrt{3} + \frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} + \sqrt{3}

= 3\sqrt{3} + \frac{1 + \sqrt{2}}{2}

= \frac{6\sqrt{3} + 1 + \sqrt{2}}{2} (Answer)

Similar questions