Math, asked by yogeshjatav13, 1 year ago

Tan (60°+theta).tan (60°-theta) = 2cos 2theta +1/2cos2theta -1

Attachments:

Answers

Answered by knjroopa
1

Step-by-step explanation:

Given  Tan (60°+theta).tan (60°-theta) = 2cos 2theta +1/2cos2theta -1

  • So l. h.s will be tan(60 + theta) tan (60 – theta)
  • So we can write this as tan (a + b) tan (a – b)
  •      So (tan 60 + tan theta / 1 – tan 60 tan theta) (tan 60 – tan theta / 1 + tan 60 tan theta)
  •      So (√3 + tan theta / 1 - √3 tan theta) (√3 – tan theta / 1 + √3 tan theta)
  • So this will be (a + b)(a – b) = a^2 – b^2      
  •      So (√3)^2 – (tan^2 theta) / 1 – (√3tan theta)^2
  •             3 – tan^2 theta / 1 – 3 tan^2 theta
  •              3 – sin^2 theta / cos^2 theta / 1 – 3 sin^2 theta / cos^2 theta
  •               3 cos^2 theta – sin^2 theta / cos^2 theta – 3 sin^2 theta
  •             So cos^2 theta – sin^^2 theta + 2 cos^2 theta / cos^2 theta – sin^2 theta – 2 sin^2 theta  
  •                    Now cos 2theta = cos^2 theta – sin^2 theta
  •                                               = 2 cos ^2 theta – 1
  •                                                  = 1 – 2 sin^2 theta
  •     So substituting we get
  •                    So cos 2 theta + cos 2theta + 1 / cos 2 theta + cos 2 theta – 1
  •                    So we get 2 cos 2 theta + 1 / 2 cos 2 theta - 1

Reference link will be

https://brainly.in/question/17956781

Answered by shahanaaz90
2

hope it helps you ....✨✨✨

Attachments:
Similar questions