Tan (60°+theta).tan (60°-theta) = 2cos 2theta +1/2cos2theta -1
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Given Tan (60°+theta).tan (60°-theta) = 2cos 2theta +1/2cos2theta -1
- So l. h.s will be tan(60 + theta) tan (60 – theta)
- So we can write this as tan (a + b) tan (a – b)
- So (tan 60 + tan theta / 1 – tan 60 tan theta) (tan 60 – tan theta / 1 + tan 60 tan theta)
- So (√3 + tan theta / 1 - √3 tan theta) (√3 – tan theta / 1 + √3 tan theta)
- So this will be (a + b)(a – b) = a^2 – b^2
- So (√3)^2 – (tan^2 theta) / 1 – (√3tan theta)^2
- 3 – tan^2 theta / 1 – 3 tan^2 theta
- 3 – sin^2 theta / cos^2 theta / 1 – 3 sin^2 theta / cos^2 theta
- 3 cos^2 theta – sin^2 theta / cos^2 theta – 3 sin^2 theta
- So cos^2 theta – sin^^2 theta + 2 cos^2 theta / cos^2 theta – sin^2 theta – 2 sin^2 theta
- Now cos 2theta = cos^2 theta – sin^2 theta
- = 2 cos ^2 theta – 1
- = 1 – 2 sin^2 theta
- So substituting we get
- So cos 2 theta + cos 2theta + 1 / cos 2 theta + cos 2 theta – 1
- So we get 2 cos 2 theta + 1 / 2 cos 2 theta - 1
Reference link will be
https://brainly.in/question/17956781
Answered by
2
hope it helps you ....✨✨✨
Attachments:
Similar questions
Math,
7 months ago
Science,
7 months ago
Math,
1 year ago
Math,
1 year ago
World Languages,
1 year ago