Math, asked by ssktassml, 1 year ago

Tan 6A = Cot (2A - 22)

Answers

Answered by LovelyG
15

Answer:

\large{\underline{\boxed{\rm A = 14}}}

Step-by-step explanation:

Given that -

\rm \tan 6A = \cot (2A - 22)

We know that -

  • tanθ = cot (90° - θ)

\rm \cot (90 - 6A) = \cot (2A - 22)

On cancelling cot both sides -

\rm 90 - 6A = 2A - 22 \\\\\rm - 6A - 2A = - 22 - 90 \\\\ \rm - 8A = - 112 \\\\ \rm A = \frac{112}{8} \\\\ \rm A =14

Hence, the value of A is 14.

\rule{300}{2}

Some more formulas related to the concept are following -

  • sin(90° - A) = cosA
  • cos(90° - A) = sinA
  • tan(90° - A) = cotA
  • cot(90° - A) = tanA
  • cosec(90° - A) = secA
  • sec(90° - A) = cosecA
Answered by Anonymous
9

Answer :-

 \mathsf{A = 14^{\circ}}

Given :-

 \mathsf {Tan 6A = Cot(2A -22)}

To find :-

The value of angle A.

Solution:-

 \text{From Trigonometric values at ($90\pm \theta $)}

we have ,

\mathsf{Tan \theta = Cot (90-\theta)}

By using this ,

 \mathsf{Cot (90-6A) = Cot (2A -22)}

  • Cancelling out cot on both side.

 \mathsf{90-6A = 2A -22}

 \mathsf{90 +22 = 2A + 6A}

 \mathsf{112 = 8A}

 \mathsf{A = \dfrac{112}{8}}

 \mathsf{A = 14^{\circ}}

  • \text{Some basic concepts}:-

The Trigonometric ratio change only when angle is :-

 \mathsf{90\pm \theta , 270 \pm \theta }

The Trigonometric ratio doesn't change when angle is :-

 \mathsf{180\pm \theta , 360\pm \theta }

Similar questions