tan 9° *tan 27° * tan 63° * tan 81° =
Answers
tan9° - tan27° - tan63° + tan81°
= cot81° + tan81° - cot 63° - tan63°
= 1/tan81° + tan81° - 1/tan63° - tan63°
= (1+tan²81°)/tan81° - (1+tan²63°)/tan63°
= sec²81°/tan81° - sec²63°/tan63°
= [(1/cos²81° ) * (cos81°/sin81°)]-[(1/cos²63°) * (cos63°/sin63°)]
= {1/(cos81°sin81°)} - { 1/(cos63°sin63°)}
Since, 2 sinAcosA = sin2A
=> sinAcosA = sin2A/2
So, expression =
{2/sin2*81° } - { 2/ sin2*63° }
= 2/sin162° - 2/sin126°
= 2/sin( pi - 18°) - 2/sin(pi - 54°)
= 2/sin18° - 2/sin54° . . . . . . . . . . . . . . . . .(1)
Now, to get the value of sin18°. . . . .
Let A = 18°
2A + 3A = 90°
2A = 90–3A
=> sin2A = sin(90–3A)
=> sin2A = cos3A
=> 2sinAcosA = 4cos^3 A - 3cosA
2sinA cosA - 4cos^3 A +3cosA = 0
=> cosA ( 2sinA- 4cos²A +3) =0
CosA= 0 ruled out
2SinA -4(1-sin²A) + 3 = 0
=> 4sin²A +2sinA-1=0
=> sinA = (-1-√5)/4) is ruled out
=> sinA = (√5-1)/4
=> sin18° = (√5–1)/4 . . . . . . . . . . . .(2)
Now to get the value of sin54°. . . . . . . . Sin3*18° = 3sin18° - 4sin^3 18°
= 3 * (√5-1)/4 - 4(√5,-1)^3/64
= (√5–1) {48–4(√5–1)²} /64
= (√5–1)(6+2√5) /16
= (4√5+4)/16
=> sin 3*18° = (√5+1)/4 . . . . . . . . . .(3)
Now, plug in these values in exp (1)
We get, 8/(√5–1) - 8/(√5+1)
= ( 8√5 + 8 - 8√5 + 8) / 4
= 16/4
= 4 . . . . . . . . . . . Ans
The answer is here,
Tan9×Tan27×Tan63×Tan81
=> Tan9×Tan (90-63)×Tan63×Tan (90-9)
We know that,
Tan (90-A) = CotA
Then,
=> Tan9×Cot63×Tan63×Cot9
=>( Tan9×Cot9)×(Tan63×Cot63)
Since, CotA×TanA = 1.
=> 1×1
=> 1
:-)Hope it help u.