Math, asked by lekhikapatel801, 3 months ago

tan A/1- cot A+cotA/1-tanA
Prove that
= 1+tan A+ cot A.

Answers

Answered by mathdude500
11

 \boxed{ \purple{ \bf \:Prove that  \:  : \dfrac{tanA}{1 - cotA}  + \dfrac{cotA}{1 - tanA}  = \:1 + tanA + cotA   }}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\tt \:  ⟼ cotA = \dfrac{1}{tanA}

\tt \:  \longrightarrow \:  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )

\large\underline\purple{\bold{Solution :-  }}

☆ Consider LHS,

\tt \:  \longrightarrow \: \dfrac{tanA}{1 - cotA}  + \dfrac{cotA}{1 - tanA}

\tt \:  \longrightarrow \: \dfrac{tanA}{1 - \dfrac{1}{tanA} }  - \dfrac{1}{tanA(1 - tanA)}

\tt \:  \longrightarrow \: \dfrac{ {tan}^{2} A}{tanA - 1}   + \dfrac{1}{tanA(1 - tanA)}

\tt \:  \longrightarrow \: \dfrac{ {tan}^{2} A}{tanA - 1}  - \dfrac{1}{tanA(tanA - 1)}

\tt \:  \longrightarrow \: \dfrac{ {tan}^{3} A - 1}{tanA(tanA - 1)}

\tt \:  \longrightarrow \: \dfrac{ \cancel{(tanA - 1)} \:  \: ( {tan}^{2}A + tanA + 1) }{tanA \:  \:  \cancel{(tanA - 1)}}

\tt \:  \longrightarrow \: \dfrac{ {tan}^{2}A + tanA + 1 }{tanA}

\tt \:  \longrightarrow \: \dfrac{ {tan}^{2} A}{tanA}  + \dfrac{tanA}{tanA}  + \dfrac{1}{tanA}

\tt \:  \longrightarrow \: tanA + 1 + cotA

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\purple{\underline{More \:  InFoRmAtIoN\::}}}} \\ \end{gathered}

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions