Math, asked by goludhyani072, 1 year ago

tan A/1+Sec A - tan A/1- Sec A = ?​

Answers

Answered by Anonymous
1

 \huge \bold { \underline{ \underline{answer}}} :  - \\   \implies \: \bf{cosec \: A} \\  \\ \red{ \bold{ \underline{step  - by - step \: explanation}} } : -  \\  \\ A.T.Q. \\  \\  \implies \:   \bold{\frac{ \tan \: A }{1 + sec \: A}  -  \frac{tan \: A}{1 - sec \: A}}  \\  \\ \bold{  Taking \: LCM} \\  \\  \implies \:   \bf{\frac{tan \: A(1 - sec \: A) - tan \: A(1 + sec \: A)}{(1 + sec \: A)(1 - sec \: A)} } \\  \\  \implies \:  \bf{ \frac{tan \: A - tan \: A \: sec \: A - tan \: A - tan \: A \: sec \: A}{ {1}^{2} -  {sec}^{2}  A}}  \\  \\   \implies \:  \bf{ \frac{ - 2tan \: A \: sec \: A}{ -  {tan}^{2} A} } \\  \\  \implies \:  \bf{ \frac{sec \: A}{tan \: A} } \\  \\   \bf{\implies \: sec \: A \: cot \: A} \\  \\  \implies \:   \bf{\frac{1}{cos \: A} . \frac{cos \: A}{sin \: A} } \\  \\  \implies \:   \bf{\frac{1}{sin \: A} } \\ OR, \\    \implies \boxed{\bf{ \: cosec \: A}} \\  \\ \red{ \bf{formula \: used}} \\  \\  \star \:  \bf{ \frac{1}{sin \theta}  = cosec \theta} \\   \bf{\star \: 1 -  {sec}^{2} \theta =  -  {tan}^{2} \theta} \\  \star \bf{   \: cot \theta=  \frac{cos \theta}{sin \theta} }

Similar questions