Math, asked by KarthikVatsavayi, 1 year ago

tan A - 1 + SEC a/ tan a + 1 - sec a

Answers

Answered by Swarnimkumar22
11
\bold{Hay Dear Friend }

 \frac{tan \: a - 1 + sec \: a}{tan \: a + 1 - sec \: a}

 \frac{(tan \: a + sec \: a) - ( - tan {}^{2}a + {sec}^{2}a) }{tan \: a + 1 - sec \: a}

\italic{we know that formula a^2-b^2=(a-b) (a+b) so, put it value in given equation }

 \frac{tan \: a + sec \: a - (sec \: a + tan \: a)(sec \: a - tan \: a)}{tan \: a + 1 - sec \: a}

 \frac{(tan \: a + sec \: a)(1 - sec \: a + tan \: a)}{tan \: a + 1 - sec \: a}

 \frac{tan \: a - tan \: a \: sec \: a + {tan}^{2}a + sec \: a - sec {}^{2} a + sec \: a \: tan \: a }{tan \: a + 1 - sec \: a}

\Italic{Now, we get that }

secA+tanA

\italic{HENCE SOLVED }

\color {Blue}{Swarnimkumar21}

Swarnimkumar22: :-)
KarthikVatsavayi: Sir, how did you get SEC A+ TAN A from the previous step.
Swarnimkumar22: Just solve that we found many equations are cut
Swarnimkumar22: see carefully I hope you understand
Swarnimkumar22: :-)
Answered by shahjignesh158
0

Answer:

hfchsryw dhi rhoj medium necessity

Similar questions