Math, asked by mokshittuseer1, 5 hours ago

tan A = 1 , sin b = 1/√2 find cos(a+b)​

Answers

Answered by abhi569
7

Answer:

0

Step-by-step explanation:

⇒ tanA = 1     &   sinB = 1/√2

⇒ tanA = tan45°   &  sinB = sin45°

⇒ A = 45°     &    B = 45°

Therefore,

        cos(A + B) = cos(45° + 45°)

                          = cos90°

                          = 0

Required value of cos(A + B) is 0

Answered by MathCracker
48

Question :-

tan A = 1 , sin b = 1/√2 find cos(a+b)?

Answer :-

  • cos(a+b) = 0

Step by step explanation :-

Given :-

  • tan A = 1
  • sin b = 1/√2

According to the trigonometry table,

We know that,

\rm:\longmapsto{ \tan 45 \degree = 1 }  \:  \:  \:  \:  \: \\  \\ \rm:\longmapsto{ \sin45 \degree =  \frac{1  }{ \sqrt{2} } }

As be written as,

\rm:\longmapsto{ \tan A=  \tan45 \degree} \\  \\ \rm:\longmapsto{ \sin b =  \sin45 \degree} \:  \:

Now, it becomes

 \rm :  \longmapsto{A = 45 \degree} \\  \\ \rm :  \longmapsto{b = 45 \degree}

We have to find,

\rm :  \longmapsto{ \cos(a + b)}

On substituting the values of a and b,

\rm :  \longmapsto{ \cos(45 \degree + 45 \degree) } \\  \\\rm :  \longmapsto{ \cos90 \degree} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

And we know that,

\rm :  \longmapsto{ \cos90 \degree = 0}

Answer :-

\bf :  \longmapsto \red{ \cos \: 90 \degree = 0}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions