Math, asked by ayushiranjan5936, 4 months ago

(tan a +1/tan a) = sec a.cosec a prove it


plz guys help me to solve this one


Answers

Answered by Anonymous
24

Answer:

tan a+1/tan a

(tan^2 a+1)/tan a

sec^2 a/tan a

(sec a× sec a)×cos a/sin a

(1/cos a×sec a)×cos a/sin a

cos a will be canceled out

sec a/sin a

sec a ×cosec a

Step-by-step explanation:

Hope it will help you Mark it brainlist. ..

Answered by Asterinn
41

Given :-

 \rm \: tan \: a +  \dfrac{1}{tan \: a }  = sec \: a \:  \: cosec \: a

To find :-

 \rm L.H.S = R.H.S

Proof :

 \rm R.H.S = \: sec \: a \:  \: cosec \: a

 \rm L.H.S =tan \: a +  \dfrac{1}{tan \: a }

 \rm \longrightarrow \large tan \: a +  \dfrac{1}{tan \: a } \\  \\  \\ \rm \longrightarrow \large\dfrac{ {tan}^{2}a +  1}{tan \: a }\\   \\  \\ \rm \bigg( {tan}^{2}a +  1 = {sec}^{2}a \bigg) \\  \\  \\ \rm \large\longrightarrow \dfrac{ {sec}^{2}a}{tan \: a } \\  \\  \\   \rm{sec }^{2} \: a =  \dfrac{1}{ {cos}^{2}a }  \: and \:   \dfrac{1}{tan \: a}  =  \dfrac{cos \: a}{sin \: a}  \\  \\  \\  \\ \rm \large\longrightarrow \dfrac{1 }{{cos}^{2}a } \times \dfrac{cos \: a}{sin \: a}  \\  \\   \\ \\ \rm \large\longrightarrow  \dfrac{1 }{{cos} \: {}a } \times \dfrac{1}{sin \: a}\\  \\   \\ \\ \rm \large\longrightarrow sec \: a \times{cosec \: a}\\  \\   \\ \\ \rm \large\longrightarrow sec \: a \:  \: {cosec \: a}

Therefore , LHS = RHS

hence proved

Similar questions