Math, asked by subhaaanu456, 5 months ago

tan A/2=(√1-cosA/1+cosA)​ proof

Answers

Answered by mantu9000
7

We have to prove that:

\tan \dfrac{A}{2} =\sqrt{\dfrac{1-\cos A}{1+\cos A}} .

R.H.S. = \sqrt{\dfrac{1-\cos A}{1+\cos A}}

Using the trigonometric identity:

1-\cos A = 2\sin^2 \dfrac{A}{2} } and

1+\cos A = 2\cos^2 \dfrac{A}{2} }

= \sqrt{\dfrac{2\sin^2 \dfrac{A}{2} }{2\cos^2 \dfrac{A}{2} }}

= \sqrt{\dfrac{\sin^2 \dfrac{A}{2} }{\cos^2 \dfrac{A}{2} }}

= \sqrt{\tan^2 \dfrac{A}{2}}

= \tan \dfrac{A}{2}

= L.H.S., proved.

\tan \dfrac{A}{2} =\sqrt{\dfrac{1-\cos A}{1+\cos A}}, proved.

Answered by RvChaudharY50
139

To Prove :- tan A/2 = √(1 - cosA/1 + cosA) ?

Solution :-

solving RHS,

→ √(1 - cosA/1 + cosA)

→ √{(1 - cosA/1 + cosA) * (1 - cosA/1 - cosA)}

→ √{(1 - cosA)² / (1 - cos²A)}

→ √{(1 - cosA)² / (sin²A)}

→ (1 - cosA) / sinA

putting

  • (1 - cosA) = 2sin²A/2
  • sinA = 2 * sinA/2 * cosA/2

→ (2sin²A/2) / (2 * sinA/2 * cosA/2)

→ (sinA/2) / (cosA/2)

(tanA/2) = LHS.

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Similar questions