tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = ?
Answers
Answered by
54
We have to prove that this expression is equal to cot A
Hope This Helps You!
Hope This Helps You!
Attachments:
abhi178:
CORRECT IT
Answered by
144
first of all, we find one important results .
[tex]cotA - tanA = \frac{1}{tanA} - tanA \\ = \frac{1-tan^2A}{tanA} \\ = \frac{2(1-tan^2A)}{2tanA} \\= 2cot2A [/tex]
hence,
cotA - tanA = 2cot2A
cotA = 2cot2A + tanA use this application here,
so,
tanA + 2tan2A + 4{tan4A +2cot8A}
= tanA + 2tan2A + 4cot4A by using above application
= tanA + 2{tan2A + 2cot4A}
= tanA + 2cot2A by using above application
=cotA by using above application
hence,
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cotA
[tex]cotA - tanA = \frac{1}{tanA} - tanA \\ = \frac{1-tan^2A}{tanA} \\ = \frac{2(1-tan^2A)}{2tanA} \\= 2cot2A [/tex]
hence,
cotA - tanA = 2cot2A
cotA = 2cot2A + tanA use this application here,
so,
tanA + 2tan2A + 4{tan4A +2cot8A}
= tanA + 2tan2A + 4cot4A by using above application
= tanA + 2{tan2A + 2cot4A}
= tanA + 2cot2A by using above application
=cotA by using above application
hence,
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cotA
Similar questions