Math, asked by shuvbanerjee002, 1 month ago

tan A = 4/7 , tan B = 1/8 , tan C= 1/7 find A + B + C​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given :-

tan A = 4/7 ,

tan B = 1/8 ,

tan C= 1/7

To find:-

Find A + B + C ?

Solution :-

Method -1:-

Given that :-

tan A = 4/7 ,

tan B = 1/8 ,

tan C= 1/7

We know that

Tan (A+ B ) = (Tan A + Tan B )/(1-Tan A Tan B)

On Substituting these values in the above formula

=> Tan (A+B) = [(4/7)+(1/8)]/[1-(4/7)(1/8)]

LCM of 7 and 8 = 56

=> Tan (A+B) = [(32+7)/56]/[1-(4/56)]

=> Tan (A+B) =(39/56)/[(56-4)/56]

=> Tan (A+B) = (39/56)/(52/56)

=> Tan(A+B) = 39/52

=> Tan (A+B) = 3/4---------(1)

and

Now finding Tan(A+B+C)

=> Tan [(A+B)+C]

=> [Tan (A+B) +Tan C]/[1-Tan(A+B)Tan C]

On Substituting these values in the above formula

=> [(3/4)+(1/7)]/[1-(3/4)(1/7)]

LCM of 4 and 7 = 28

=> [(21+4)/28]/[1-(3/28)]

=> (25/28)/[(28-3)/28]

=> (25/28)/(25/28)

=> 1

=> Tan (A+B+C) = 1

=> Tan (A+B+C) = Tan 45°

=> A+B+C = 45°

Method -2:-

Given that :-

tan A = 4/7 ,

tan B = 1/8 ,

tan C= 1/7

We know that

Tan(A+B+C)=[(TanA+TanB+TanC-(TanA TanBTanC)]/[(1-TanATan B-TanB Tan C -TanCTanA)]

On Substituting these values in the above formula

=>[(4/7)+(1/8)+(1/7)-(4/7)(1/8)(1/7)]/[1-(4/7)(1/8)-(1/8)(1/7)-(1/7)(4/7)]

=> [(5/7)+(1/8)-(4/392)][1-(4/56)-(1/56)-(4/49)]

LCM of 7 ,8 = 56

=> [{(40+7)/56}-(1/98)]/ [ 1-((4+1)/56)-(4/49)]

=> [(47/56)-(1/98)]/[1-(5/56)-(4/49)]

LCM of 56 and 98 = 392

LCM of 56 and 49 = 392

=> (329-4)/392]/[392-35-32)/392]

=> (325/392)/(392-67/392)

=>(325/392)/(325/392)

=> 1

=> Tan (A+B+C) = 1

=> Tan (A+B+C) = Tan 45°

=> A+B+C = 45°

Answer:-

The value of A+B+C for the given problem is 45°

Used formulae:-

-» Tan(A+B ) =(Tan A+Tan B)/(1-Tan ATan B)

-»Tan(A+B+C)=(TanA+TanB+TanC-(TanATanBTanC)/(1-TanATan B-TanB Tan C -TanCTanA)

Similar questions