tan a+b=1 and cosa-b=root3 /2 then find the value of a and b
Answers
Answered by
3
Solution :-
tan ( a + b ) = 1
Also, tan 45° = 1
So, tan (a + b ) = tan 45°
⇒ a + b = 45° → eq ( 1)
cos ( a - b ) = √3 / 2
Also, cos 30° = √3 / 2
So, cos ( a - b ) = cos 30°
⇒ a - b = 30° → eq ( 2)
Adding eq ( 1 ) & eq ( 2 )
⇒ a + b + a - b = 45 + 30
⇒ 2a = 75
⇒ a = 75 / 2
⇒ a = 37.5
Substituting a = 37.5 in eq ( 1)
⇒ 37.5 + b = 45
⇒ b = 45 - 37.5
⇒ b = 7.5
Hence, the value of a is 37.5 and b is 7.5.
Similar questions