Math, asked by pss2, 1 year ago

tan( a + b) is equal to P and tan(a-b) equal to Q then find tan 2a

Answers

Answered by gayatrikumari99sl
0

Answer:

\frac{P + Q }{1-PQ} is the required value of tan2a .

Step-by-step explanation:

Explanation:

Given , tan(a + b) = P and tan(a - b) = Q

Formula of tan(x+ y ) = \frac{tanx+ tan y }{1- tanxtany}

Step 1:

From the given question we have tan2a

And tan 2a can be written as ,

tan2a = tan[(a + b) +(a -b)]

From the formula of tan (x+ y) = \frac{tanx+ tan y }{1- tanxtany}

⇒ tan 2a = \frac{tan(a+b)+ tan (a - b) }{1- tan(a+ b)tan(a- b)}

Now , put the value of tan(a+ b) and tan(a - b) we get ,

tan2a = \frac{P + Q }{1-PQ}

Final answer:

Hence , the value of tan2a is  \frac{P + Q }{1-PQ} .

#SPJ2

Answered by ssanskriti1107
0

Answer:

The value of   tan2A =\frac{P+Q}{1-PQ}  .

Step-by-step explanation:

We know that

  •   tan2A = tan[(A+B)+(A-B)]
  •   tan(x+y) = \frac{tanx+tany}{1-tanx\cdot tany}

         

Given that   tan(A+B)  =  P   and   tan(A-B) = Q

\implies tan2A = tan[(A+B)+(A-B)]

                  = \frac{tan(A+B)+tan(A-B)}{1-tan(A+B)tan(A-B)}

                  =\frac{P+Q}{1-PQ}

Hence,   tan2A =\frac{P+Q}{1-PQ}

#SPJ2

Similar questions