Physics, asked by sunilmanakikeremj, 9 months ago

tan a + b is equal to tan A + tan b by 1 minus tan a tan B so that tan 75 is equal to 2 + root 3​

Answers

Answered by Anonymous
8

\huge \underline {\underline{ \mathfrak{ \green{Ans}wer \colon}}}

We are given,

\large{\boxed{\sf{\tan(A \: + \: B) \: = \: \dfrac{\tan A \: + \: \tan B}{1\: - \: \tan A \tan B}}}}

We have to show that, tan75 = 2 + √3

So, Take A = 45° and B = 30°

\implies {\sf{\tan (45 \: + \: 30) \: = \: \dfrac{\tan 45 \: + \:  \tan 30}{1 \: - \: \tan 45 \tan 30}}} \\ \\ \implies {\sf{\tan(45 \: + \: 30) \: = \: \dfrac{1 \: + \: \dfrac{1}{\sqrt{3}}}{1 \: - \: 1 \times \dfrac{1}{\sqrt{3}}}}} \\ \\ \implies {\sf{\tan (45 \: + \: 30) \: = \: \dfrac{ \dfrac{\sqrt{3} \: + \: 1}{\sqrt{3}}}{\dfrac{\sqrt{3} \: - \: 1}{\sqrt{3}}}}} \\ \\ \implies {\sf{\tan (45 \: + \: 30) \: = \: \dfrac{\sqrt{3} \: + \: 1}{\sqrt{3} \: - \: 1}}} \\ \\ \implies {\sf{\tan(75) \: = \: \dfrac{\sqrt{3} \: + \: 1}{\sqrt{3} \: - \: 1} \: \times \:  \dfrac{\sqrt{3} \: + \: 1}{\sqrt{3} \: + \: 1}}} \\ \\ \implies {\sf{\tan (75) \: = \: \dfrac{4 \: + \: 2 \sqrt{3}}{2}}} \\ \\ \implies {\sf{\tan (75) \: = \: \dfrac{2(2 \: + \: \sqrt{3})}{2}}} \\ \\ \implies {\sf{\tan (75) \: = \: 2 \: + \: \sqrt{3}}}


Rythm14: Excellent! :p
Anonymous: Awesome
Answered by Nikhil9971
5

Explanation:

Please find the ATTACHMENT.

Attachments:
Similar questions
Physics, 1 year ago