Math, asked by palpadher, 10 months ago

tan(A+B)/tan(A-B)=sin^2A-sin^2B/cos^2A-sin^2B

Answers

Answered by IamIronMan0
2

Answer:

 \frac{ \tan( \alpha  +  \beta ) }{ \tan( \alpha  -  \beta ) }  \\  \\  =  \frac{ \sin( \alpha  +  \beta ) \cos( \alpha  -  \beta )   }{ \sin( \alpha  -  \beta )  \cos( \alpha  +  \beta ) }  \\  \\  \frac{( \sin( \alpha ) \cos( \beta ) +  \cos( \alpha ) \sin( \beta ) ) ( \cos( \alpha ) \cos( \beta )  +  \sin( \alpha )  \sin( \beta )  )  }{( \sin( \alpha ) \cos( \beta )  -   \cos( \alpha ) \sin( \beta ) ) ( \cos( \alpha ) \cos( \beta )   -  \sin( \alpha )   \sin( \beta ))  }  \\  \\  =  \frac{ \sin( \alpha ) \cos( \alpha ) ( \cos {}^{2} ( \beta ) +  \sin {}^{2} ( \beta ))  +  \sin( \beta ) \cos( \beta )(  \sin {}^{2} ( \alpha ) +  \cos {}^{2} ( \alpha ))     }{\sin( \alpha ) \cos( \alpha ) ( \cos {}^{2} ( \beta )  -   \sin {}^{2} ( \beta ))  +  \sin( \beta ) \cos( \beta )(  \sin {}^{2} ( \alpha )  -  \cos {}^{2} ( \alpha )) }  \\  \\  =  \frac{ \sin( \alpha ) \cos( \alpha )  + \sin( \beta )   \cos( \beta )  }{ \sin( \alpha ) \cos( \alpha ) \cos(2 \beta )   -  \sin( \beta )  \cos( \beta )  \cos(2 \alpha )  }

Multiply and divide by 2 , use sin2x formula ,

Similar questions