Math, asked by budhramsingh931, 11 months ago

Tan (A-B) + tan B/ 1- tan( A-B ) . tan B = tan A​

Answers

Answered by Charmcaster
0

Answer:

let \:  \alpha  -  \beta  =  \gamma  \\  \frac{ \tan( \gamma ) +  \tan( \beta )  }{1 -  \tan( \gamma ) \tan( \beta )  }  =  \tan( \gamma  +  \beta )  \\  =  \tan( \alpha  -  \beta  +  \beta )  \\  =  \tan( \alpha )

Answered by codiepienagoya
0

Simplify:

Step-by-step explanation:

\ Given \ value:\\\\\tan (A-B) + tan B/ 1- tan( A-B ) .\tan B = \tan A\\\\\ Solution:\\\\\ formula:\\\\\tan(A-B)= \frac{\tan A-\tan B}{1+\tan A \tan B}\\\\\ put\  the \ value \ in\ given \ equation \\\\\ Equation:\\\\\tan (A-B) + tan B/ 1- tan( A-B ) .\tan B = \tan A\\\\\ L.H.S \\\\\rightarrow \frac{\frac{\tan A-\tan B}{1+\tan A \tan B} + \tan B}{1- \frac{\tan A-\tan B}{1+\tan A \tan B}\times \tan B}\\\\

\rightarrow \frac{\frac{\tan A-\tan B+ \tan B(1+\tan A \tan B)}{1+\tan A \tan B}} { \frac{(1+\tan A \tan B)-\tan A \tan B-\tan^2 B)}{1+\tan A \tan B}}\\\\\rightarrow \frac{\frac{\tan A-\tan B+ \tan B+\tan A \tan^2 B}{1+\tan A \tan B}} { \frac{1-\tan^2 B}{1+\tan A \tan B}}\\\\\rightarrow \frac{\tan A+\tan A \tan^2 B}{1+\tan A \tan B} \times \frac {1+\tan A \tan B} {1-\tan^2 B}\\\\\rightarrow \frac{\tan A(1+\tan^2 B)}{1+\tan A \tan B} \times \frac {1+\tan A \tan B} {1-\tan^2 B}\\\\\rightarrow \tan A\\

\ L.H.S= R.H.S

Learn more:

  • Simplify: https://brainly.in/question/14115208

Similar questions