Math, asked by reehanrao2006, 1 month ago

tan a· cot a =2 then tan20 a cot 20 a =

Answers

Answered by prernas8107
0

Answer:

tanθ+cotθ=2

Squaring both sides;

(tanθ+cotθ)

2

=2

2

⇒tan

2

θ+cot

2

θ+2tanθcotθ=4

⇒tan

2

θ+cot

2

θ+2=4

⇒tan

2

θ+cot

2

θ=2

Answered by pulakmath007
3

SOLUTION

GIVEN

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

TO DETERMINE

\displaystyle \sf{ {\tan}^{20}  \alpha + {\cot}^{20}  \alpha  }

EVALUATION

Here it is given that

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

\displaystyle \sf{ \implies \: \tan  \alpha + \frac{1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: \frac{{\tan}^{2}  \alpha + 1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 = 2\tan  \alpha }

 \displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 - 2\tan  \alpha  = 0}

\displaystyle \sf{ \implies \: {(\tan  \alpha  - 1)}^{2} = 0}

\displaystyle \sf{ \implies \: (\tan  \alpha  - 1) = 0}

\displaystyle \sf{ \implies \: \tan  \alpha   =  1}

\displaystyle \sf{ \implies \cot  \alpha   =  1}

This gives

\displaystyle \sf{ {\tan}^{20}  \alpha  + {\cot}^{20}  \alpha }

 \displaystyle \sf{ = {1}^{20} + {1}^{20} }

 \sf{ =1 + 1}

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions