Math, asked by arnav06ahlawat, 4 months ago

tan A cot A
Prove that
1-cot A 1-tan A
1+tan A+ cot A. CB​

Answers

Answered by ravi2303kumar
0

Answer:

I think your question is, prove that,

tanA/1-cotA + CotA/1-tanA = 1+tanA+cotA, if so, see the below proof.

Proof:

take LHS

= \frac{tanA}{1-cotA} + \frac{cotA}{1-tanA}

= \frac{tanA}{1-\frac{1}{tanA} } + \frac{\frac{1}{tanA} }{1-tanA}

= \frac{tanA}{\frac{tanA-1}{tanA} } + \frac{1 }{tanA(1-tanA)}

= \frac{tan^2A}{tanA-1 } + \frac{1 }{tanA(1-tanA)}

= -\frac{tan^2A}{1-tanA} + \frac{1 }{tanA(1-tanA)}

=  \frac{-tan^3A+1 }{tanA(1-tanA)} = \frac{1^3 - tan^3A }{tanA(1-tanA)}

= \frac{(1 - tanA)(1^2+tan^2A+(1)(tanA) }{tanA(1-tanA)}    (   ∵ a³-b³ = (a-b)(a²+b²+ab)  )

= \frac{1+tan^2A+tanA }{tanA}

= \frac{1}{tanA} + \frac{tan^2A}{tanA} + \frac{tanA}{tanA}

= cotA + tanA + 1

= 1+tanA+cotA

= RHS

=> LHS = RHS

Hence proved

Similar questions