tan A+cot A=sec A cosec A
Answers
Answered by
143
To Prove :-
tan A + cot A = sec A cosec A
Proof :-
Let us Consider LHS
As We know that,
Taking LCM
By using the identity
LHS = RHS
Answered by
2
Correct question= Is it possible to prove (tan A + cot A) (cosec A - sin A) (sec A - cos A) = 1?
Solution⬇️
LHS =(tanA+cotA)(cosecA-SinA)(secA-CosA)
tanA+cotA=(SinA/CosA)+(CosA/SinA)
= (sin²Α+cos²Α)/cosAsinA
= 1/cosAsinA
CosecA-SinA=(1/SinA)-SinA
= (1-sin²Α)/SinA= cos²Α/sinA
SecA-cosA=(1/cosA)-cosA=(1-cos²Α)/cos A
=sin²Α/cosA
(tanA+cotA)(cosecA-SinA)(secA-cosA)
=(1/sinAcosA)(cos²Α/SinA)(sin²Α/CosA)
=1=RHS
Similar questions