Math, asked by Picolo, 10 months ago

tan A+cot A=sec A cosec A

Answers

Answered by ShírIey
143

To Prove :-

tan A + cot A = sec A cosec A

\rule{150}2

Proof :-

Let us Consider LHS

:\implies\sf\; tan \; A + cot\; A

As We know that,

\hookrightarrow\sf\; tan\; A \; = \; \large\frac{sin\;A}{cos\;A}

\hookrightarrow\sf \; cot \; A \; = \; \large\frac{cos\; A}{sin\; A}

\rule{150}2

:\implies\sf\large\frac{sin\; A}{cos\;A} \; = \; {cos \; A}\;{sin\; A}

Taking LCM

 :\implies\sf\LARGE\frac{sin^2\;A \; + \;cos^2\;A}{cos \; A sin\; A}

By using the identity

\large\boxed{\sf{sin^2 \; A\; +\; cos^2\; A \;=\;1}}}

:\implies\sf\Large\frac{1}{sin\; A \; cos\; A}\; =\; \frac{1}{cos\;A}\times\frac{1}{sin\;A}

:\implies\sf\; sec\; A \; cosec\; A

LHS = RHS

:\implies\sf\;tan \;A + cot \;A = \sec \;A \;cosec\; A

\rule{200}2

Answered by Anonymous
2

Correct question= Is it possible to prove (tan A + cot A) (cosec A - sin A) (sec A - cos A) = 1?

Solution⬇️

LHS =(tanA+cotA)(cosecA-SinA)(secA-CosA)

tanA+cotA=(SinA/CosA)+(CosA/SinA)

= (sin²Α+cos²Α)/cosAsinA

= 1/cosAsinA

CosecA-SinA=(1/SinA)-SinA

= (1-sin²Α)/SinA= cos²Α/sinA

SecA-cosA=(1/cosA)-cosA=(1-cos²Α)/cos A

=sin²Α/cosA

(tanA+cotA)(cosecA-SinA)(secA-cosA)

=(1/sinAcosA)(cos²Α/SinA)(sin²Α/CosA)

=1=RHS

Similar questions