tan? A + cot? A = sec? A cosec? A - 2
Answers
Step-by-step explanation:
Let A =45
Then LHS
(1+1)^2+(1+1)^2= 2^2 +2^2= 4 + 4=8
RHS
(Root 2 + Root 2)^2= (2Root2)^2=8
LHS=RHS
OR
LHS
Open Squares
(1 + tan^2A + 2 tan A) + (1+cot^2+2cotA)
1+tan^2A = Sec^2A & 1+ cot^2A = cosec^2 A
Put & Get
Sec^2 A + Cosec^2 A + 2 (tan A + Cot A)
Tan=sin/cos Cot=cos /sin
So, tan A + Cot A= (sin^2 A + Cos ^2 A)/ sin A Cos A
1/ SinA Cos A= Cosec A Sec A
LHS= Sec^2 A + Cosec^2 A + 2 Cosec A Sec A
Open RHS AND you'll get the Same
(1+tan A)^2 + (1+cot A)^2 = (1+tan^2 A)+ 2tan A+ (1+ cot^2 A)+ 2cot A
We know tan A =1/cot A
=> sec^2 A+2tan A+cosec^2 A+ 2cotA
=> sec^2 A+(2tan A++2cotA)+cosec^2 A
=> sec^2 A+(2sinA/cosA++2cosA/sinA)+cosec^2 A
=> sec^2 A+(2(sin^2A+2cos^2A)/sinAcosA)+cosec^2 A
=> sec^2 A+(2/sinAcosA)+cosec^2 A
=> sec^2 A+(2secAcosecA)+cosec^2 A
=> (secA+cosecA)^2
(1+tanA)^2+(1+cotA)^2
=1+tan^2(A)+2tanA+1+cot^2(A)+2cotA
[We know that 1+tan^2(A)=sec^2(A) and 1+cot^2(A)=cosec^2(A)]
So equation becomes
Sec^2(A)+cosec^2(A)+2tanA+2cotA
Sec^2(A)+cosec^2(A)+2[sinA/cosA+cosA/sinA]
Sec^2(A)+cosec^2(A)+2[sin^2(A)+cos^2(A)] /sinACosA
=sec^2(A)+cosec^2(A)+cosecAsecA
=(secA+cosecA)^2