Math, asked by jyoti8699, 1 year ago

tan a + cot a = sec a cosec a, prove..​

Answers

Answered by Anonymous
17

\mathfrak{\underline{\underline{\green{Solution:-}}}}

To Prove:

tanA + cotA = secA × cosecA

\\

Proof:

Let us consider LHS

LHS:

\mathsf{ = tanA+cotA }

As we know

\boxed{\red{ tanA = \dfrac{sinA}{cosA}}}

\boxed{\red{cotA = \dfrac{cosA}{sinA} }}

\mathsf{=  \dfrac{sinA}{cosA}+ \dfrac{cosA}{sinA}}

\mathsf{=  \dfrac{{sinA}^{2}+{cosA}^{2}}{sinA \times cosA}}

\\

By the Identity

\boxed{\red{ {sinA}^{2}+{cosA}^{2}= 1}}

\mathsf{=  \dfrac{1}{sinA \times cosA}}

\mathsf{=  \dfrac{1}{sinA} \times \dfrac{1}{cosA}}

\\

As we know

\boxed{\red{ \dfrac{1}{sinA}= cosecA}}

\boxed{\red{ \dfrac{1}{cosA}= secA}}

\\

\mathsf{= cosecA \times secA}

\mathsf{= secA \times cosecA}

\\

RHS: = \mathsf{= secA \times cosecA}

\\

Here

\boxed{\pink{ LHS = RHS}}

\\

HENCE PROVED!


DhanyaDA: nailed it ❤
Anonymous: Thanks ^_-
Anonymous: nice answer ⭐
Anonymous: Thnx @bhai :)
BrainlyElegantdoll: Fantastic♥️
Answered by DhanyaDA
26

ANSWER:

\sf tan a+cot a=sec a.cosec a

the above equation is required to prove

let us consider LHS

\sf tan a+cot a

 \sf \boxed {tan a = \frac {sina}{cosa}}

\sf \boxed {cot a= \frac {cos a}{sina}}

then

lhs =  \frac{sina}{cosa}  +  \frac{cosa}{sina}

when we take the LCM of the two fractions

we get

 =  \frac{ {sin}^{2}a  + {cos}^{2} a }{cosa \times sina}

but we know that

\sf \boxed {sin^2a+cos^2a=1}

then

lhs =  \frac{1}{cosa  \times  sina}

 =  \frac{1}{cosa}   \times  \frac{1}{sina}

but

\sf \boxed {\frac {1}{cosa}=seca }

 \sf \boxed {\frac {1}{sina}=coseca}

then LHS =seca.coseca

LHS=RHS

hence proved

IDENTITIES USED

tana =  \frac{sina}{cosa}

cota =  \frac{cosa}{sina}

 {sin}^{2} a +  {cos}^{2} a = 1

 \frac{1}{cosa}  = seca

 \frac{1}{sina}  = coseca


Anonymous: osm @machi❤
DhanyaDA: thanks macha ❤❤
BrainlyElegantdoll: Always a ⭐
DhanyaDA: thanks ❤
Similar questions