Math, asked by bunnymeenakshi, 3 months ago

tan A=cot A then find cos A​

Answers

Answered by happiness10
26

Answer:

 \tan(a)  =  \cot(a)  \\  \\  \frac{ \sin(a) }{ \cos(a) }  =  \frac{ \cos(a) }{ \sin(a) }  \\  \\ by \: cross \: multiplication -  \\  \\ we \: get -  \\  { \sin }^{2}a =  { \cos }^{2} a \\  \\  \cos(a)  =  \sqrt{ \sin {}^{2}a }. \\  \\  \\ hope \: it \: will \: help \: u \: dear...

#happiness♡

Answered by Anonymous
1

GIVEN:

  • Tan A= Cot A

TO FIND:

  • Cos A

SOLUTION:

\large \sf :  \implies \:  \: Tan  \: A= Cot \:  A

 \large :  \implies  \:  \: \sf Tan \:  A=  \frac{1}{Tan \:  A}

 \large \sf  :   \implies \:  \: {Tan }^{2} A = 1

Cancel Square both sides

 \sf \large :  \implies \:  \: Tan \: A =1

 \sf \large :  \implies \:  \: Tan \: 45 \degree =1

 \sf So \: A = 45 \degree

It means we have to find value of Cos 45° :D

 \large  :  \implies \:  \:  \sf Cos \: 45 \degree =  \frac{1}{ \sqrt{2} }

  \sf \large:  \implies \:  \:  Cos\:45°= \frac{1 \times  \sqrt{2} }{ \sqrt{2} \times  \sqrt{2}  }

  \sf \large:  \implies \:  \:  Cos\:45  =  \frac{ \sqrt{2} }{2}

  \sf \large:  \implies \:  \:  Cos\:45  =  \frac{ 1.414 }{2}

  \sf \large:  \implies \:  \:  Cos\:45  =  0.707

So final answer is 0.707

_________________

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Similar questions