tan A = cot B, prove that A + B = 90°. Solution: We have
Answers
Answered by
0
Step-by-step explanation:
tan A = cot B
682
4.0
(eq. i) {given }
also, tan A = cot (90 - A ) (eq.ii) {complimentary angle }
From eq. i & ii -
cot B = cot (90°- A )
⇒ B=90° - A. → 90° = A + B.
⇒ A + B = 90°. [PROVED ].
Answered by
1
tan A = cot B
⇒ tan A = tan (90° - B)
⇒ A = 90° - B
⇒ A + B = 90°
Similar questions