Math, asked by happyindia999, 11 months ago

Tan a minus b equals to 1 by root 3 and sin a equal to root 3 by 2 find cos B​

Answers

Answered by Anonymous
9

Given :

 \sf   \tan(a - b)  =  \frac{1}{ \sqrt{3} }  \\  \\  \sf \sin a  =  \frac{ \sqrt{3} }{2}

Solution :

 \sf \sin a =  \frac{ \sqrt{3} }{2} \\  \\  \sf \sin a =   \sin 60° \\  \\   \boxed{\sf a = 60°} \\  \\ \sf  \tan(a - b)  =  \frac{1}{ \sqrt{3} }  \\  \\  \sf \tan(60 - b )  =  \tan30 \\  \\ \sf 60 - b = 30 \\  \\  \sf - b = 30 - 60 \\  \\  \boxed{ \sf b = 30°} \\  \\ \boxed{  \sf  \green{ \cos  b =  \cos30 =  \frac{\sqrt{3}}{2} }}

Answered by Anonymous
5

\huge\bold{\sf{Solution}}

GIVEN-

\tan(a-b) = \dfrac{1}{\sqrt3}

\sin(a) = \dfrac{\sqrt3}{2}

TO FIND-

\cos(b)

Here we go,

\sin(a) = \dfrac{\sqrt3}{2}

\sin(a) = \sin60°

\sin(a) = 60°

\tan(a-b) = \dfrac{1}{\sqrt(3)}

\tan(a-b) = \tan30°

\tan(60°-b) = \tan30°

60°-b = 30°

b = 60°-30°

b = 30°

→Now, \cosb = \cos30° = \dfrac{\sqrt3}{2}

_________________________________________

Similar questions