Math, asked by animexraptor, 6 months ago

tan A +sec A -1 / tan A -Sec A +1 = 1+ sin A / cos A ​

Answers

Answered by amansharma264
7

EXPLANATION.

  \sf :  \implies \:  \dfrac{ \tan(a) +  \sec(a)   - 1}{ \tan(a)  -  \sec(a)  + 1}  =  \dfrac{1 +  \sin(a) }{ \cos(a) } \\  \\  \sf :  \implies \: 1 =  (\sec {}^{2} (a)   -  \tan {}^{2} (a) ) \\  \\  \sf :  \implies \:  \frac{ \tan(a)  +  \sec(a)  - ( \sec {}^{2} (a)  -  \tan {}^{2} (a)) }{ \tan(a)  -  \sec(a)  + 1} \\  \\   \sf :  \implies \:  \frac{ \tan(a)  +  \sec(a)  -  [( \sec(a)  -  \tan(a))( \sec(a)   +  \tan(a) )]}{ \tan(a)   -  \sec(a)  + 1}

 \sf : \implies \:  \dfrac{( \sec(a)  +  \tan(a)(1 -  \sec(a)   +  \tan(a)) }{ \tan(a)  -  \sec(a)  + 1} \\  \\  \sf : \implies \:  \sec(a)  +  \tan(a)  \\  \\ \sf : \implies \:  \frac{1}{ \cos(a )}  +  \frac{ \sin(a) }{ \cos(a) } \\  \\  \sf : \implies \:  \frac{1 +  \sin(a) }{ \cos(a) }  = proved

Answered by Anonymous
1

Given :

 \frac{tan A + sec A - 1}{tan A - sec A + 1} = ( \frac{1 + sin A}{cos A})

L. H. S :

=  \frac{tan A + sec A - 1}{tan A - sec A + 1}

=  \frac{( tan A + sec A ) - ( sec^2 A - tan^2 A )}{tan A - sec A + 1}

=  \frac{( sec A + tan A ) - ( sec A + tan A )(sec A - tan A)}{tan A - sec A + 1}

=  \frac{( sec A + tan A ) - [( 1 - sec A - tan A )]}{tan A - sec A + 1}

=  \frac{( sec A + tan A ) - ( tan A - sec A + 1 )}{tan A - sec A + 1}

=  ( sec A + tan A ) = ( \frac{1}{cos A}) + ( \frac{sin A}{cos A}) = ( \frac{( 1 + sin A )}{cos A}) = R. H. S

Therefore, L. H. S = R. H. S

Similar questions