(tan A + sec(A) - 1)/(tan A - SecA) = (1 + sin A)/(cos A)
Answers
Answered by
1
Solution:
LHS
= tan(a)+sec(a)-1/tan(a)-sec(a)
= (sin(a)/cos(a))+(1cos(a))-1/(sin(a)/cos(a))-(1/cos(a))
= sin(a)+1-cos(a)/cos(a)/sin(a)/cos(a)-1/cos(a)
= sin(a)+1-cos(a)/cos(a)/sin(a)-1/cos(a)
= sin(a)+1-cos(a)/ sin(a)-1
RHS
= 1+sin(a)/cos(a)
= 1/cos(a) + sin(a)/cos(a)
= sec(a)+tan(a)
The result is not proven.
Hope this will help.
LHS
= tan(a)+sec(a)-1/tan(a)-sec(a)
= (sin(a)/cos(a))+(1cos(a))-1/(sin(a)/cos(a))-(1/cos(a))
= sin(a)+1-cos(a)/cos(a)/sin(a)/cos(a)-1/cos(a)
= sin(a)+1-cos(a)/cos(a)/sin(a)-1/cos(a)
= sin(a)+1-cos(a)/ sin(a)-1
RHS
= 1+sin(a)/cos(a)
= 1/cos(a) + sin(a)/cos(a)
= sec(a)+tan(a)
The result is not proven.
Hope this will help.
Similar questions