Math, asked by kumarvishwanath688, 7 months ago

tan A + sec A -1/ tanA -sec A +1 = 1+ sinA/ cos A​

Answers

Answered by RoyalKalakar
26

\large{\underline{\underline{\boxed{\boxed{\mathfrak{\red{Question:}}}}}}}

\implies{\sf{\dfrac{tan\;A + \sec\;A - 1}{tan\;A - \sec\;A + 1}=\dfrac{1 + \sin\;A}{\cos\;A}}}

\large{\underline{\underline{\boxed{\boxed{\mathfrak{\red{Step\: By\; Step\; Explanation:}}}}}}}

{\bf{\star{\underline{\blue{To\;Prove:}}}}}

\implies{\sf{\dfrac{tan\;A + \sec\;A - 1}{tan\;A - \sec\;A + 1}=\dfrac{1 + \sin\;A}{\cos\;A}}}

Now, we will take LHS part,

\implies{\sf{\dfrac{tan\;A + \sec\;A - 1}{tan\;A - \sec\;A + 1}}}

\implies{\sf{\dfrac{tan\;A + \sec\;A - (\sec^2\;A - \tan^2\; A)}{tan\;A - \sec\;A + 1}}}

\implies{\sf{\dfrac{tan\;A + \sec\;A - (\sec\;A + \tan\; A)(\sec\;A - \tan\; A)}{tan\;A - \sec\;A + 1}}}

\implies{\sf{\dfrac{(\tan\; A + \sec\; A)(-\sec\;A + \tan\;A + 1)}{tan\;A - \sec\;A + 1}}}

\implies{\sf{\tan\; A + \sec\; A}}

\implies{\sf{\dfrac{\sin\;A}{\cos\;A}+\dfrac{1}{\cos\;A}}}

\implies{\sf{\dfrac{\sin\; A + 1}{\cos\;A}}}

∴ LHS = RHS

Hence Proved!!

Answered by Anonymous
4

Step-by-step explanation:

I hope it's helpful please mark as brainlist

Attachments:
Similar questions