Math, asked by suciantibone766, 9 months ago

(tan a + sec a )² - (tan a - sec a)² = 4 sin a / 1 - sin² a​

Answers

Answered by Anonymous
67

\bf\green{\underline{ }}lhs = ( {tan \alpha  + sec \alpha )}^{2}  - ( {tan \alpha  - sec \alpha )}^{2}  \\  \\  =  > \bf\green{\underline{  {a}^{2} -  {b}^{2} = (a + b)(a - b)   }} \\ ......\bf\red{ a = tan \alpha  + sec \alpha } \\ ......\bf\red{ b = tan \alpha  - sec \alpha } \\  \\ \bf\green{\underline{ }} =  > (tan \alpha  + sec \alpha  + tan \alpha  - sec \alpha ) \\ \bf\green{\underline{ }} \:  \:  \:  \:  \:  \:  \:  \:  (tan \alpha  + sec \alpha  - tan \alpha  + sec \alpha ) \\  \\ \bf\green{\underline{ }} =  > (2tan \alpha )(2sec \alpha ) \\  \\ \bf\large\pink{\underline{ =  > 4tan \alpha .sec \alpha  }}  -  -  - (1) \\  \\  \\  \\ \bf\large\green{\underline{ }}rhs =  \frac{4sin \alpha }{1 -  {sin}^{2} \alpha  }  \\  \\  =  > \bf\large\green{\underline{  {sin}^{2} \alpha  +  {cos}^{2}   \alpha   = 1 }} \\  \\ \bf\large\green{\underline{ }} =  >  \frac{4sin \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  > \bf\large\green{\underline{ }} \frac{4sin \alpha }{cos \alpha  \times cos \alpha }  \\  \\ \bf\large\green{\underline{ }} =  >  \frac{4sin \alpha }{cos \alpha }  \times  \frac{1}{cos \alpha }  \\  \\ \bf\large\green{\underline{  \frac{sin \alpha }{cos \alpha }  = tan \alpha }} \\  \\  =  > \bf\large\green{\underline{ }}4tan \alpha  \times  \frac{1}{cos \alpha }  \\  \\ \bf\large\green{\underline{  \frac{1}{cos \alpha }  = sec \alpha }} \\  \\  =  > \bf\large\pink{\underline{ 4tan \alpha .sec \alpha }} -  -  - (2) \\  \\

By equation (1) and (2) ,

LHS = RHS (verified)

Similar questions