Math, asked by clerisvianney1989, 2 months ago

((Tan A+SecA)÷ (CosecA+CotA))×((TanA-SecA)÷CosecA-CotA)) = 2(TanA×CosecA-CotA×SecA)​

Answers

Answered by Anonymous
26

 \frac{ \sec(a) +  \tan(a)  }{ \cos \sec(a)  +  \cot(a)  }  =  \frac{ \cos(a)  -  \cot(a) }{ \sec(a)  -  \tan(a) }  \\  \\

LHS :-

 =  \frac{ \sec(a) +  \tan(a)  }{ \cos \sec(a)  +  \cot(a) }  \times  \frac{ \sec(a) -  \tan(a)  }{ \sec(a) -  \tan(a)  }  \times  \frac{ \cos \sec(a) -  \cot(a)   }{ \cos \sec(a)   -  \cot(a) } \\  \\  =  \frac{( \sec ^{2} (a)  -  { \tan }^{2} (a))( \cos \sec(a)  -  \cot(a) ) }{( \cos \sec ^{2} (a)   -  \cot^{2} (a))( \sec(a)  -  \tan(a))   }  \\  \\  =  \frac{(1)( \cos \sec(a) -  \cot(a)  ) }{(1)(  \sec(a )  -  \tan(a)) }  \\  \\  =  \frac{ \cos \sec(a) -  \cot(a)   }{ \sec(a)  -  \tan(a) }

LHS = RHS

\text{ Hence, proved }\large{\red{\ddot{\smile}}}

Similar questions