Math, asked by pardeepdhiman855, 1 month ago

(+ tan A tan B)² + (tann-lan B)?
Seca A Sec² B​

Answers

Answered by mathdude500
2

Appropriate Question :-

Prove that

\rm :\longmapsto\:(1 + tanAtanB)^{2} + (tanA - tanB)^{2}  =  {sec}^{2}A -{sec}^{2}B

Answer :-

\rm :\longmapsto\:(1 + tanAtanB)^{2}  + (tanA - tanB)^{2}

\rm \:  =  \:1 +  {tan}^{2}A {tan}^{2}B + 2tanAtanB+ {tan}^{2}A+{tan}^{2}B - 2tanAtanB

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{ \because \:  {(x + y)}^{2} =  {x}^{2}   +  {y}^{2}  + 2xy}}

\rm \:  =  \:1 +  {tan}^{2}A {tan}^{2}B+ {tan}^{2}A+{tan}^{2}B

\rm \:  =  \:1 +  {tan}^{2}A +   {tan}^{2}A {tan}^{2}B+ {tan}^{2}B

\rm \:  =  \:(1 +  {tan}^{2}A) +   {tan}^{2}B(1 + {tan}^{2}A)

\rm \:  =  \:(1+{tan}^{2}A)(1+{tan}^{2}B)

\rm \:  =  \:  \: \: {sec}^{2}A \:  {sec}^{2}B

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions