tan A
write all the other trigonometric ratios of
in terms of Sec A
Answers
An equation involving trigonometric ratios of an angle is called a trigonometric identity. This is true for all angles A such that 0°≤ A ≤ 90°.
Some identities are:
1) cos² A + sin²A = 1
2) sec² A - tan² A = 1.
3) cosec² A - cot² A = 1.
-----------------------------------------------------------------------------------------------------
We know that,
sec A = 1 / cos A
⇒ cos A = 1/sec A
•cos²A + sin²A = 1
⇒ sin²A = 1 – cos²A
⇒ sin²A = 1 – (1/sec²A) (cosA= 1/secA)
⇒ sin²A = (sec²A-1)/sec²A
⇒sinA = √((sec²A-1)/sec²A)
⇒sinA = √(sec²A-1) ÷ (secA)_______(i)
•sin A = 1/cosec A
⇒ cosec A = 1/sin A
⇒cosecA= secA ÷√sec²A-1 (from eq i)
Now,
•sec²A – tan²A = 1
⇒ tan²A = sec²A + 1
⇒tanA = √sec²A + 1_______(ii)
•tan A = 1/cot A
⇒ cot A = 1/tan A
⇒cotA = 1/√sec²A + 1 (from eq ii)
----------------------------------------------------------------------------------------------------
Hope this will help you : )
Answer:
cos² A + sin²A = 1
2) sec² A - tan² A = 1.
3) cosec² A - cot² A = 1.
-----------------------------------------------------------------------------------------------------
We know that,
sec A = 1 / cos A
⇒ cos A = 1/sec A
•cos²A + sin²A = 1
⇒ sin²A = 1 – cos²A
⇒ sin²A = 1 – (1/sec²A) (cosA= 1/secA)
⇒ sin²A = (sec²A-1)/sec²A
⇒sinA = √((sec²A-1)/sec²A)
⇒sinA = √(sec²A-1) ÷ (secA)_______(i)
•sin A = 1/cosec A
⇒ cosec A = 1/sin A
⇒cosecA= secA ÷√sec²A-1 (from eq i)
Now,
•sec²A – tan²A = 1
⇒ tan²A = sec²A + 1
⇒tanA = √sec²A + 1_______(ii)
•tan A = 1/cot A
⇒ cot A = 1/tan A
⇒cotA = 1/√sec²A + 1 (from eq ii)