Math, asked by ShrutiGupta5885, 18 days ago

(tan(alpha))/(1 + tan^2 (alpha)) = (cot(alpha))/(1 + cot^2 (alpha))

Answers

Answered by vikkiain
0

Answer:

Solve \:  \:  by  \:  \: converting \:  \: tan \alpha  \:  \: to \: cot \alpha

Step-by-step explanation:

 lhs = \frac{tan \alpha }{1 + tan^{2}  \alpha }  \\  =  \frac{ \frac{1}{cot \alpha } }{1 +  \frac{1}{cot^{2} \alpha  } }  \\  =  \frac{ \frac{1}{cot \alpha } }{ \frac{cot^{2} \alpha  + 1 }{cot ^{2}  \alpha } }   \\  =  \frac{1}{cot \alpha }  \times  \frac{cot^{2} \alpha  }{cot^{2} \alpha  + 1 }  \\  \frac{cot \alpha }{1 + cot^{2} \alpha  }  = rhs

Similar questions