Math, asked by bhargavi9897, 1 month ago

tan alpha + cot alpha =2 then tan ^20 alpha +cot ^20 alpha =​

Answers

Answered by shaikhshezin5117
0

Answer:

Solution

verified

Verified by Toppr

Given tan(20−3α)=cot(5α−20)

⟹tan(20−3α)=tan(90−5α+20)

⟹tan(20−3α)=tan(110−5α)

⟹20−3α=110−5α

⟹5α−3α=110−20

⟹2α=90

⟹α=

2

90

=45

sinαsecαtanα−cosecαcosαcotα

=sin45sec45tan45−cosec45cos45cot45

=(

2

1

)(

2

)(1)−(

2

)(

2

1

)(1)=1−1=0

Answered by pulakmath007
2

SOLUTION

GIVEN

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

TO DETERMINE

\displaystyle \sf{ {\tan}^{20}  \alpha + {\cot}^{20}  \alpha  }

EVALUATION

Here it is given that

\displaystyle \sf{ \tan  \alpha  + \cot  \alpha  = 2}

\displaystyle \sf{ \implies \: \tan  \alpha + \frac{1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: \frac{{\tan}^{2}  \alpha + 1}{\tan  \alpha } = 2}

\displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 = 2\tan  \alpha }

 \displaystyle \sf{ \implies \: {\tan}^{2}  \alpha  + 1 - 2\tan  \alpha  = 0}

\displaystyle \sf{ \implies \: {(\tan  \alpha  - 1)}^{2} = 0}

\displaystyle \sf{ \implies \: (\tan  \alpha  - 1) = 0}

\displaystyle \sf{ \implies \: \tan  \alpha   =  1}

\displaystyle \sf{ \implies \cot  \alpha   =  1}

This gives

\displaystyle \sf{ {\tan}^{20}  \alpha  + {\cot}^{20}  \alpha }

 \displaystyle \sf{ = {1}^{20} + {1}^{20} }

 \sf{ =1 + 1}

 = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions