tan(B-C) + tan(C-A) + tan(A-B) = tan(B-C)tan(C-A)tan(A-B)
Answers
Answered by
5
To show: tan(B-C)+tan(C-A)+tan(A-B)=tan(B-C)tan (C-A)tan(A-B)
solving tan(B-C)+tan(C-A)+tan(A-B)
tan(B-C)+tan(C-A)+tan(A-B)=tanB-tanC+tanC-tanA+tanA-tanB
tanB-tanC+tanC-tanA+tanA-tanB=0
Therefore, tan(B-C)+tan(C-A)+tan(A-B)=0
similarly, solving tan(B-C)tan (C-A)tan(A-B)
tan(B-C)tan(C-A)tan(A-B)=tanB-tanC+tanC-tanA+tanA-tanB
tanB-tanC+tanC-tanA+tanA-tanB=0
Therefore, tan(B-C) + tan(C-A) + tan(A-B) = tan(B-C)tan(C-A)tan(A-B)
solving tan(B-C)+tan(C-A)+tan(A-B)
tan(B-C)+tan(C-A)+tan(A-B)=tanB-tanC+tanC-tanA+tanA-tanB
tanB-tanC+tanC-tanA+tanA-tanB=0
Therefore, tan(B-C)+tan(C-A)+tan(A-B)=0
similarly, solving tan(B-C)tan (C-A)tan(A-B)
tan(B-C)tan(C-A)tan(A-B)=tanB-tanC+tanC-tanA+tanA-tanB
tanB-tanC+tanC-tanA+tanA-tanB=0
Therefore, tan(B-C) + tan(C-A) + tan(A-B) = tan(B-C)tan(C-A)tan(A-B)
Answered by
2
Answer:
compare LHS and RHS
Step-by-step explanation:
Expand all the 3 terms of tan in LHS and RHS and compare
Similar questions