English, asked by tga07, 1 year ago

tan + cot =6,find tan^2+ cot^2

Answers

Answered by Anonymous
3

 \tan( \alpha )  +  \cot( \alpha )  = 6
Squaring both sides
 {( \tan( \alpha )  + \cot( \alpha ) ) }^{2}   =  {6}^{2}  \\  { \tan }^{2}  \alpha   +  { \cot}^{2} \alpha  + 2 \tan( \alpha )    \cot( \alpha )  = 36 \\
tan×cot=1
Hence
  { \tan }^{2}  \alpha  +  { \cot}^{2} \alpha  = 36 - 2  \\ { \tan }^{2}  \alpha  +  { \cot}^{2} \alpha = 34
Answered by MahaAham
1

tan a + cot a = 6

take square both sides  

(tan a + cot a)² = 6²  

* Use formula: ( x + y )^{2} =   x^2 + 2xy + y^2

tan² a + 2 tan a . cot a + cot² a = 36  


we Know,  

tan a = \frac{1}{ cot a }

so,  

tan²  a + cot²  a + 2 = 36

tan²  a + cot²  a = 36 - 2

tan² a + cot² a = 34

Similar questions