-tanθcot(90°-θ)+secθcosec(90°-θ)+sin^2 35°+sin^2 55°/tan10°tan20°tan30°tan70°tan80°
Answers
Answered by
2
Answer:
Step-by-step explanation:
- TanθCot(90°-θ)+SecθCosec(90°-θ)+Sin²35° + Sin²55/ Tan10Tan20Tan30Tan70Tan80
We know that
//Cot(90 - θ) = Tanθ, //Cosec(90 - θ) = Secθ, //Sin55 = Sin(90-35) = Cos35,
//Tan10 = Tan(90 -80) = Cot80, //Tan20 = Tan (90 -70) = Cot70
Substitute these values in the given problem:
=> -Tanθ * Tanθ + Secθ*Secθ + Sin²35 + Cos²35/ Cot80Cot70Tan30Tan70Tan80
=> -Tan²θ + Sec²θ + Sin²35 + Cos²35/Cot80Cot70Tan30Tan70Tan80
We know the identities:
Sec²θ -Tan²θ = 1
Sin²θ + Cos²θ = 1
TanθCotθ = 1
=> 1 + 1 / 1 * 1 * Tan30
=> 2/(1/√3)
=> 2√3.
Answered by
0
Answer:
hey
Step-by-step explanation:
mark my answers to your questions brainliest please,...........♥.♥
Similar questions