tanθ-cotθ/sinθ cosθ=sec²θ-cosec²θ=tan²θ-cot²θ,Prove it by using trigonometric identities.
Answers
Answered by
3
Given :
tanθ - cotθ /sinθ cosθ = sec²θ -cosec²θ = tan²θ - cot²θ
LHS = tanθ - cot θ /sinθ cosθ
= [sinθ / cosθ - cosθ /sinθ] / sinθ cosθ
[tanθ = sinθ/cosθ]
= {sin² θ - cos²θ/sinθ .cosθ} / sinθ cosθ
= {sin² θ - cos²θ/sinθ .cosθ} × 1/ sinθ. cosθ
= sin² θ - cos²θ/sin²θ .cos²θ
= sin² θ /sin²θ .cos²θ - cos²θ/sin²θ .cos²θ
= 1/ cos²θ - 1/sin²θ
LHS = sec²θ - cosec²θ
[ 1/ cosθ = secθ , 1/sinθ = cosecθ]
= (1 + tan²θ) - (1+ cot²θ)
[ cosec²θ = 1+ cot²θ , sec²θ =1 + tan²θ]
= 1 + tan²θ - 1 - cot²θ
LHS = tan²θ - cot²θ = RHS
HOPE THIS ANSWER WILL HELP YOU..
Answered by
1
Hi ,
Here I am using 'A ' instead of theta.
************************************
we know that ,
1 ) tanA = sinA/cosA
2 ) cotA = cosA/sinA
3 ) 1 + tan²A = sec²A
4 ) 1 + cot²A = cosec²A
5 ) 1/sinA = cosecA
6 ) 1/cosA = secA
******************************************
i ) ( tanA - cotA )/sinAcosA
multiply numerator and denominator
with sinAcosA , we get
= (sinAcosAtanA-sinAcosAcotA)/sin²Acos²A
= [ sin² A - cos²A ]/sin²Acos²A
= (sin²A/sin²Acos²A) - (cos²A/sin²Acos²A)
= 1/cos²A - 1/sin²A
= sec²A - cosec²A ---( 1 )
= ( 1 + tan²A ) - ( 1 + cot²A )
= 1 + tan²A - 1 - cot²A
= tan²A - cot²A ---( 2 )
I hope this helps you.
: )
Here I am using 'A ' instead of theta.
************************************
we know that ,
1 ) tanA = sinA/cosA
2 ) cotA = cosA/sinA
3 ) 1 + tan²A = sec²A
4 ) 1 + cot²A = cosec²A
5 ) 1/sinA = cosecA
6 ) 1/cosA = secA
******************************************
i ) ( tanA - cotA )/sinAcosA
multiply numerator and denominator
with sinAcosA , we get
= (sinAcosAtanA-sinAcosAcotA)/sin²Acos²A
= [ sin² A - cos²A ]/sin²Acos²A
= (sin²A/sin²Acos²A) - (cos²A/sin²Acos²A)
= 1/cos²A - 1/sin²A
= sec²A - cosec²A ---( 1 )
= ( 1 + tan²A ) - ( 1 + cot²A )
= 1 + tan²A - 1 - cot²A
= tan²A - cot²A ---( 2 )
I hope this helps you.
: )
Similar questions