Math, asked by vkcpandey2000, 8 months ago

tan cube alpha upon one plus tan square alpha +cot cube alpha upon oneplus cot alpha =Sec alpha into cos alpha - 2 sin alpha cos alpha​

Answers

Answered by sandy1816
4

\huge\color{Black}\boxed{\colorbox{yellow}{❀Answer❀}}\\

 \frac{ {tan}^{3} \alpha  }{1 +  {tan}^{2}  \alpha }  +  \frac{ {cot}^{3} \alpha  }{1 +  {cot}^{2} \alpha  }  \\  =  \frac{ {tan}^{3} \alpha  }{ {sec}^{2}  \alpha }  +  \frac{ {cot}^{3}  \alpha }{ {cosec}^{2}  \alpha }  \\  =  \frac{ {sin}^{3} \alpha  }{ {cos}^{3} \alpha  }  \times  {cos}^{2}  \alpha  +  \frac{ {cos}^{3}  \alpha }{ {sin}^{3} \alpha  }  \times  {sin}^{2}  \alpha  \\  =  \frac{ {sin}^{3} \alpha  }{cos \alpha }  +  \frac{ {cos}^{3}  \alpha }{sin \alpha }  \\  =  \frac{ {sin}^{4}  \alpha  +  {cos}^{4}  \alpha }{sin \alpha cos \alpha }  \\  =  \frac{( { {sin}^{2} \alpha  +  {cos}^{2} \alpha   })^{2}  - 2 {sin}^{2}  \alpha  {cos}^{2} \alpha  }{sin \alpha cos \alpha} \\  =  \frac{1 - 2 {sin}^{2} \alpha  {cos}^{2} \alpha   }{sin \alpha cos \alpha }  \\  =  \frac{1}{sin \alpha \: cos \alpha }  -  \frac{2 {sin}^{2}  \alpha  {cos}^{2}  \alpha }{sin \alpha cos \alpha }  \\  = sec \alpha cosec \alpha  - 2sin \alpha cos \alpha

Similar questions