Math, asked by spoo23, 1 year ago

tan cube theta by 1 + tan square theta + cos cube theta by 1 + cot square theta equal to sec theta × cosec theta - 2 Sin Theta into cos theta

Answers

Answered by nsvnarayanan
81

Answer:here is ur answer.....

Step-by-step explanation:

May this help u....

Attachments:
Answered by AneesKakar
11

To Prove:

\frac{tan^{3}\theta }{1+tan^{2}\theta } +\frac{cot^{3}\theta }{1+cot^{2} \theta} = sec\theta cosec\theta-2sin\theta cos\theta

Step-by-step explanation:

Formulas to be used:

(1.) 1 + tan²θ = sec²θ          (2.) 1 + cot²θ = cosec²θ         (3.) sin²θ + cos²θ = 1

Procedure:          

                              L.H.S.=\frac{tan^{3}\theta }{1+tan^{2}\theta } +\frac{cot^{3}\theta}{1+cot^{2} \theta}

                                          =\frac{tan^{3}\theta}{sec^{2}\theta } +\frac{cot^{3}\theta }{cosec^{2} \theta}\\\\=tan^{3}\theta cos^{2}\theta+cot^{3}\theta sin^{2}\theta  \\\\=(\frac{sin^{3} \theta}{cos^{3}\theta } )cos^{2}\theta+(\frac{cos^{3}\theta }{sin^{3}\theta } )sin^{2} \theta\\\\=\frac{sin^{3} \theta}{cos\theta }+\frac{cos^{3}\theta }{sin\theta } \\\\=\frac{sin^{4}\theta+cos^{4}\theta  }{sin\theta cos\theta} \\

Adding and subtracting 2sin²θcos²θ  in order to get (sin²θ + cos²θ)² :

                                          =\frac{sin^{4}\theta +cos^{4}\theta  +2sin^{2} \theta cos^{2} \theta-2sin^{2} \theta cos^{2} \theta}{sin\theta cos\theta}\\\\=\frac{(sin^{2}\theta +cos^{2}\theta)^{2}  -2sin^{2} \theta cos^{2} \theta}{sin\theta cos\theta} \\\\=\frac{1 -2sin^{2} \theta cos^{2} \theta}{sin\theta cos\theta} \\\\=\frac{1}{sin\theta cos\theta}- \frac{2sin^{2} \theta cos^{2} \theta}{sin\theta cos\theta} \\\\=sec\theta cosec\theta-2sin\theta cos\theta=R.H.S.

                                      ∴ L.H.S. = R.H.S. Proved

                     \therefore\frac{tan^{3}\theta }{1+tan^{2}\theta } +\frac{cot^{3}\theta }{1+cot^{2} \theta} = sec\theta cosec\theta-2sin\theta cos\theta-Proved

#SPJ2

Similar questions