Math, asked by akashrahangdale0705, 4 months ago

tan invers 1/5+tan invers 1/7+tan invers 1/3+tan invers 1/8 =π\4





Answers

Answered by diwanamrmznu
4

solution:-

 \implies \:  \tan \:  {}^{ - 1}  ( \frac{1}{5} ) +  \tan {}^{ - 1} ( { \frac{1}{7} }^{} )  +  \tan {}^{ - 1} ( \frac{1}{3}  ) +  \tan {}^{ - 1} ( \frac{1}{8}) =  \frac{\pi}{4}   \\

formula of

 \implies \pink{ \tan {}^{  -  1} x +  \tan {}^{ - 1}y = \tan {}^{ - 1} ( \frac{x + y}{1 - xy} )  } \\

LHS

 \implies \:  \tan {}^{ - 1} ( \frac{ \frac{1}{5} +  \frac{1}{7}  }{ 1 - \frac{1}{5} .\frac{1}{7}  } ) +   \tan {}^{ - 1} ( \frac{ \frac{1}{3} +  \frac{1}{8}  }{1 -  \frac{1}{3} . \frac{1}{8} }) \\

 \implies \:  \tan {}^{ - 1} (   \frac{ \frac{ \cancel{12}}  { \cancel{35}} }{ \frac{ \cancel{34}}{ \cancel{35}} }   ) +   \tan {}^{ - 1} (  \frac{ \frac{11}{ \cancel{24}} }{ \frac{23}{ \cancel{24}} } ) \\  \\  \implies \:  \tan {}^{ - 1} ( \frac{6}{17} ) +  \tan {}^{ - 1}  ( \frac{11}{23} ) \\  \\  \implies \:  \tan {}^{ - 1}( \frac{ \frac{6}{17} +  \frac{11}{23}  }{1 -  \frac{6}{17} \frac{11}{23}  } ) \\  \\  \implies \:  \tan {}^{ - 1}  \cancel{ ( \frac{ \frac{325}{391} }{ \frac{325}{391} } )}

 \implies  \tan {}^{ - 1} (1)  \\  \\  \implies \cancel{\tan {}^{ - 1} ( \tan}( \frac{\pi}{4} ) )

 \implies \:   \frac{\pi}{4}  \\

RHS =lhs (hence proved)

__________________

thankyou ❣️

Similar questions