Math, asked by Jeshaan, 1 year ago

tan inverse 1/2 = π/4 - 1/2cos inverse 4/5

Answers

Answered by shanu81
3
36.86989764584401


is the answer
Answered by pinquancaro
19

Answer and Explanation:

To prove : \tan^{-1}(\frac{1}{2})=\frac{\pi}{4}-\frac{1}{2}\cos^{-1}(\frac{4}{5})

Proof :

Let \cos^{-1}(\frac{4}{5})=x

\cos x=\frac{4}{5}

Applying identity,

\frac{1-\tan^2(\frac{x}{2})}{1+\tan^2(\frac{x}{2})}=\frac{4}{5}

5-5\tan^2(\frac{x}{2})=4+4\tan^2(\frac{x}{2})

\tan^2(\frac{x}{2})=\frac{1}{9}

\tan(\frac{x}{2})=\frac{1}{3}

Now, Take the expression as

\frac{1}{2}=\tan(\frac{\pi}{4}-\frac{1}{2}x)

Take RHS,

=\tan(\frac{\pi}{4}-\frac{x}{2})

Apply formula, \tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\times \tan B}

=\frac{\tan (\frac{\pi}{4})-\tan (\frac{x}{2})}{1+\tan(\frac{\pi}{4})\times \tan (\frac{x}{2})}

=\frac{1-\tan (\frac{x}{2})}{1+\tan (\frac{x}{2})}

Substitute, \tan(\frac{x}{2})=\frac{1}{3}

=\frac{1-\frac{1}{3}}{1+\frac{1}{3}}

=\frac{3-1}{3+1}

=\frac{2}{4}

=\frac{1}{2}

=LHS

Hence proved.

Similar questions