Tan inverse alpha tan inverse beta tan inverse gamma
Answers
Answer:
hy mate will u plz completely psot the question so that anyone can help u
prove the property of the inverse trigonometric function arctan(x) + arctan(y) + arctan(z) = arctanx+y+z−xyz1−xy−yz−zx (i.e., tan−1 x + tan−1 y + tan−1 z = tan−1 x+y+z−xyz1−xy−yz−zx)
Prove that, tan−1 x + tan−1 y + tan−1 z = tan−1 x+y+z–xyz1–xy–yz–zx
Proof :
Let, tan−1 x = α, tan−1 y = β and tan−1γ
Therefore, tan α = x, tan β = y and tan γ = z
We know that, tan (α + β + γ) = tanα+tanβ+tanγ−tanαtanβtanγ1−tanαtanβ−tanβtanγ−tanγtanα
tan (α + β + γ) = x+y+z–xyz1–xy–yz–zx
α + β + γ = tan−1 x+y+z–xyz1–xy–yz–zx
or, tan−1 x + tan−1 y + tan−1 z = tan−1 x+y+z–xyz1–xy–yz–zx. Proved.
Second method:
We can prove tan−1 x + tan−1 y + tan−1 z = tan−1 x+y+z–xyz1–xy–yz–zx in other way.
We know that, tan−1 x + tan−1 y = tan−1 x+y1–xy
Therefore, tan−1 x + tan−1 y + tan−1 z = tan−1 x+y1–xy + tan−1 z
tan−1 x + tan−1 y + tan−1 z = tan−1 x+y1–xy+z1−x+y1−xy∙z
tan−1 x + tan−1 y + tan−1 z = tan−1 x+y+z–xyz1–xy–yz–zx. Proved.